Resumenes de los Capítulos de CISCO.

Resumenes de los capitulos del CCNA 2 y CCNA 3 V4.0 algunos de ellos muestran videos explicativos acerca del capitulo, sientanse libres de copiarlos y distribuirlos! d(^_^).

Programa Calculo de Mensualidades.

Programa que calcula el precio y las mensualidades a pagar de 12 modelos de autos PEUGEOT.

Programa BASE DE DATOS com MySQL

Este programa permite la consulta y manejo de bases de datos, simulando el sistema de pagos de colegiaturas

TUTORIAL, Conectar MySQL y vb.NET

Este tutorial explica de manera breve la manera de conectar MySQL y vb.NET, Ejemplos sencillos.

Programacion para iOS

Ejemplos Básicos de Programacion para iPhone y iPad

domingo, 3 de junio de 2012

CISCO - CCNA 3 --------- Capítulo 2 ------ Resumen

 CONFIGURACION Y CONCEPTOS BASICOS DEL SWITCH


Introducción al funcionamiento de los switches

Los conmutadores poseen la capacidad de aprender y almacenar las direcciones de red de la capa 2 (direcciones MAC) de los dispositivos alcanzables a través de cada uno de sus puertos. Por ejemplo, un equipo conectado directamente a un puerto de un conmutador provoca que el conmutador almacene su dirección MAC. Esto permite que, a diferencia de los concentradores, la información dirigida a un dispositivo vaya desde el puerto origen al puerto de destino.


En el caso de conectar dos conmutadores o un conmutador y un concentrador, cada conmutador aprenderá las direcciones MAC de los dispositivos accesibles por sus puertos, por lo tanto en el puerto de interconexión se almacenan las MAC de los dispositivos del otro conmutador.

Atendiendo al método de direccionamiento de las tramas utilizadas

Store-and-Forward
Los switches Store-and-Forward guardan cada trama en un búfer antes del intercambio de información hacia el puerto de salida. Mientras la trama está en el búfer, el switch calcula el CRC y mide el tamaño de la misma. Si el CRC falla, o el tamaño es muy pequeño o muy grande (un cuadro Ethernet tiene entre 64 bytes y 1518 bytes) la trama es descartada. Si todo se encuentra en orden es encaminada hacia el puerto de salida.

Cut-Through
Los switches cut-through fueron diseñados para reducir esta latencia. Esos switches minimizan el delay leyendo sólo los 6 primeros bytes de datos de la trama, que contiene la dirección de destino MAC, e inmediatamente la encaminan.

Adaptative Cut-Through
Son los witches que procesan tramas en el modo adaptativo y son compatibles tanto con store-and-forward como con cut-through. Cualquiera de los modos puede ser activado por el administrador de la red, o el switch puede ser lo bastante inteligente como para escoger entre los dos métodos, basado en el número de tramas con error que pasan por los puertos.




Wikipedia ( http://es.wikipedia.org/wiki/Conmutador_%28dispositivo_de_red%29 )

 

Detalles de la configuracion del Switch

  •  El estándar 802.3 Ethernet se comunica mediante tráfico unicast, broadcast y multicast traffic. Las configuraciones duplex y la segmentación de la LAN mejoraron el rendimiento. Los dominios de colisión, los dominios broadcast, la latencia de la red y la segmentación de la LAN son consideraciones clave en el diseño de la LAN.
  • Los métodos de envío del switch tienen influencia sobre la latencia y el rendimiento de la LAN. Los búferes de memoria del tráfico de la red permiten que el switch almacene tramas, de manera que un switch pueda ofrecer funciones de envío y de conmutación simétrica, asimétrica y multicapa.
  • Mediante el uso de la CLI del IOS de Cisco, puede configurar muchas funciones del switch rápidamente.
  • Una configuración del switch inicial consiste en proporcionar conectividad IP básica, nombres de host y títulos. Verificación de su configuración mediante el comando show running-config del IOS de Cisco y siempre realizar una copia de respaldo de las configuraciones de su switch.
  • Use la CLI del IOS de Cisco para proteger con contraseña el acceso de consola y terminal virtual.
  • Implementar contraseñas para limitar el acceso al modo EXEC privilegiado y configurar la encriptación de contraseña en todo el sistema.
  • Usar SSH para la configuración de terminal remota en los switches Cisco.
    Activar la seguridad de puerto para mitigar los riesgos y realizar análisis de seguridad periódicos de los switches de la red.


Elementos clave de las redes 802.3/Ethernet


CSMA/CD
Las señales de Ethernet se transmiten a todos los hosts que están conectados a la LAN mediante un conjunto de normas especiales que determinan cuál es la estación que puede tener acceso a la red. El conjunto de normas que utiliza Ethernet está basado en la tecnología de acceso múltiple por detección de portadora y detección de colisiones (CSMA/CD) IEEE. CSMA/CD utiliza solamente con la comunicación half-duplex que suele encontrarse en los hubs. Los switches full-duplex no utilizan CSMA/CD.

DETECCION DE PORTADORA
En el método de acceso CSMA/CD Método de acceso, todos los dispositivos de red que tienen mensajes para enviar deben escuchar antes de transmitir.Si un dispositivo detecta una señal de otro dispositivo, espera un período determinado antes de intentar transmitirla.

Cuando no se detecta tráfico alguno, el dispositivo transmite su mensaje. Mientras se produce dicha transmisión, el dispositivo continúa atento al tráfico o a posibles colisiones en la LAN. Una vez enviado el mensaje, el dispositivo vuelve al modo de escucha predeterminado.

ACCESO MULTIPLE
Si la distancia entre los dispositivos es tal que la latencia de las señales de un dispositivo supone la no detección de éstas por parte de un segundo dispositivo, éste también podría comenzar a transmitirlas. De este modo, los medios contarían con dos dispositivos transmitiendo señales al mismo tiempo. Los mensajes se propagan en todos los medios hasta que se encuentran. En ese momento, las señales se mezclan y los mensajes se destruyen: se ha producido una colisión. Aunque los mensajes se dañan, la mezcla de señales continúa propagándose en todos los medios.

DETECCION DE COLISIONES
Cuando un dispositivo está en el modo de escucha, puede detectar cuando se produce una colisión en los medios compartidos, ya que todos los dispositivos pueden detectar un aumento en la amplitud de la señal que esté por encima del nivel normal.


Comunicaciones en Ethernet

Las comunicaciones en una red LAN conmutada se producen de tres maneras: unicast, broadcast y multicast:

UNICAST:
 Comunicación en la que un host envía una trama a un destino específico. En la transmisión unicast sólo existen un emisor y un receptor. La transmisión unicast es el modo de transmisión predominante en las LAN y en Internet. Algunos ejemplos de transmisiones unicast son: HTTP, SMTP, FTP y Telnet.

BROADCAST:
 Comunicación en la que se envía una trama desde una dirección hacia todas las demás direcciones. En este caso, existe sólo un emisor pero se envía la información a todos los receptores conectados. La transmisión broadcast es fundamental cuando se envía el mismo mensaje a todos los dispositivos de la LAN. Un ejemplo de transmisión broadcast es la consulta de resolución de direcciones que envía el protocolo de resolución de direcciones (ARP) a todas las computadoras en una LAN.+


MULTICAST:
Comunicación en la que se envía una trama a un grupo específico de dispositivos o clientes. Los clientes de la transmisión multicast deben ser miembros de un grupo multicast lógico para poder recibir la información. Un ejemplo de transmisión multicast son las transmisiones de voz y video relacionadas con las reuniones de negocios en conferencia basadas en la red.





 Trama de Ethernet


Campos Preámbulo y Delimitador de inicio de trama
Loa campos Preámbulo (7 bytes) y Delimitador de inicio de trama (SFD) (1 byte) se utilizan para la sincronización entre los dispositivos emisores y receptores. Estos primeros 8 bytes de la trama se emplean para captar la atención de los nodos receptores. Básicamente, los primeros bytes sirven para que los receptores se preparen para recibir una nueva trama. 

Campo Dirección MAC de destino
El campo Dirección MAC de destino (6 bytes) es el identificador del receptor deseado. La Capa 2 utiliza esta dirección para ayudar a que un dispositivo determine si la trama está dirigida a él. Se compara la dirección de la trama con la dirección MAC del dispositivo. Si coinciden, el dispositivo acepta la trama.

Campo Dirección MAC origen
El campo Dirección MAC de origen (6 bytes) identifica la NIC o interfaz que origina la trama. Los switches utilizan esta dirección para agregar dicha interfaz a sus tablas de búsqueda.

Campo Longitud/tipo
El campo Longitud/Tipo (2 bytes) define la longitud exacta del campo Datos de la trama. Este campo se utiliza más adelante como parte de la Secuencia de verificación de trama (FCS) con el objeto de asegurar que se haya recibido el mensaje de manera adecuada. Aquí se puede ingresar solamente el tipo o la longitud de una trama.

Campos Datos y Relleno
Los campos Datos y Relleno (de 46 a 1500 bytes) contienen la información encapsulada de una capa superior, que es una PDU de Capa 3 genérica, o, más comúnmente, un paquete de IPv4. Todas las tramas deben tener una longitud mínima de 64 bytes (longitud mínima que colabora en la detección de colisiones).

Campo Secuencia de verificación de trama
El campo FCS (4 bytes) detecta errores en una trama. Utiliza una comprobación de redundancia cíclica (CRC). El dispositivo emisor incluye los resultados de la CRC en el campo FCS de la trama. El dispositivo receptor recibe la trama y genera una CRC para buscar errores. Si los cálculos coinciden, no se ha producido ningún error. Si los cálculos no coinciden, la trama se descarta.

Dirección MAC 

Los switches emplean direcciones MAC para dirigir las comunicaciones de red a través de su estructura al puerto correspondiente hasta el nodo de destino. La estructura del switch son los circuitos integrados y la programación de máquina adjunta que permite controlar las rutas de datos a través del switch. El switch debe primero saber qué nodos existen en cada uno de sus puertos para poder definir cuál será el puerto que utilizará para transmitir una trama unicast.


Todos los dispositivos conectados a una LAN Ethernet tienen interfaces con direcciones MAC. La NIC utiliza la dirección MAC para determinar si deben pasarse los mensajes a las capas superiores para su procesamiento. La dirección MAC está codificada de manera permanente dentro de un chip ROM en una NIC. Este tipo de dirección MAC se denomina dirección grabada (BIA, Burned In Address). Algunos fabricantes permiten que se modifiquen las direcciones MAC de manera local. La dirección MAC se compone del identificador exclusivo de organización (OUI) y del número de asignación del fabricante.

Número de asignación del fabricante
La parte de la dirección MAC asignada por el fabricante es de 24 bits de longitud e identifica exclusivamente el hardware de Ethernet. Puede ser una BIA o bien con el bit modificado en forma local mediante software.

El switch determina cómo manejar las tramas de datos entrantes mediante una tabla de direcciones MAC. El switch genera su tabla de direcciones MAC grabando las direcciones MAC de los nodos que se encuentran conectados en cada uno de sus puertos. Una vez que la dirección MAC de un nodo específico en un puerto determinado queda registrada en la tabla de direcciones, el switch ya sabe enviar el tráfico destinado a ese nodo específico desde el puerto asignado a dicho nodo para posteriores transmisiones.

Configuración de Duplex

Se utilizan dos tipos de parámetros duplex para las comunicaciones en una red Ethernet: half duplex y full duplex. La figura muestra los dos parámetros dúplex que están disponibles en los equipos de red modernos.


Half Duplex:
 La comunicación half-duplex se basa en un flujo de datos unidireccional en el que el envío y la recepción de datos no se producen al mismo tiempo. Esto es similar a la función de las radios de dos vías o dos walki-talkies en donde una sola persona puede hablar a la vez. Si una persona habla mientras lo hace la otra, se produce una colisión. Por ello, la comunicación half-duplex implementa el CSMA/CD con el objeto de reducir las posibilidades de que se produzcan colisiones y detectarlas en caso de que se presenten.





Full duplex: En las comunicaciones full-duplex el flujo de datos es bidireccional, por lo tanto la información puede enviarse y recibirse al mismo tiempo. La capacidad bidireccional mejora el rendimiento, dado que reduce el tiempo de espera entre las transmisiones. Actualmente, la mayoría de las tarjetas NIC Ethernet, Fast Ethernet y Gigabit Ethernet disponibles en el mercado proporciona capacidad full-duplex. En el modo full-duplex, el circuito de detección de colisiones se encuentra desactivado.



 Ancho de banda y rendimiento

Una importante desventaja de las redes Ethernet 802.3 son las colisiones. Las colisiones se producen cuando dos hosts transmiten tramas de forma simultánea. Cuando se produce una colisión, las tramas transmitidas se dañan o se destruyen. Los hosts transmisores detienen la transmisión por un período aleatorio, conforme a las reglas de Ethernet 802.3 de CSMA/CD.

 Dado que Ethernet no tiene forma de controlar cuál será el nodo que transmitirá en determinado momento, sabemos que cuando más de un nodo intente obtener acceso a la red, se producirán colisiones. La solución de Ethernet para las colisiones no tiene lugar de manera instantánea. Además, los nodos que estén involucrados en la colisión no podrán dar comienzo a la transmisión hasta que se resuelva el problema. Cuanto mayor sea la cantidad de nodos que se agreguen a los medios compartidos, mayor será la posibilidad de que se produzcan colisiones. Por ello, es importante comprender que al establecer el ancho de banda de la red Ethernet en 10 Mb/s, el ancho de banda completo para la transmisión estará disponible sólo una vez que se hayan resuelto las colisiones.

Dominios de colisión

Al expandir una LAN Ethernet para alojar más usuarios con mayores requisitos de ancho de banda, aumenta la posibilidad de que se produzcan colisiones. Para reducir el número de nodos en un determinado segmento de red, se pueden crear segmentos físicos de red individuales, llamados dominios de colisión.

El área de red donde se originan las tramas y se producen las colisiones se denomina dominio de colisiones. Todos los entornos de los medios compartidos, como aquellos creados mediante el uso de hubs, son dominios de colisión. Cuando un host se conecta a un puerto de switch, el switch crea una conexión dedicada. 


Dominios de broadcast

Si bien los switches filtran la mayoría de las tramas según las direcciones MAC, no hacen lo mismo con las tramas de broadcast. Para que otros switches de la LAN obtengan tramas de broadcast, éstas deben ser reenviadas por switches. Una serie de switches interconectados forma un dominio de broadcast simple. Sólo una entidad de Capa 3, como un router o una LAN virtual (VLAN), puede detener un dominio de broadcast de Capa 3. Los routers y las VLAN se utilizan para segmentar los dominios de colisión y de broadcast.

Segmentación LAN

Las LAN se segmentan en varios dominios de broadcast y de colisión más pequeños mediante el uso de routers y switches. Anteriormente se utilizaban los puentes pero no suele verse este tipo de equipos de red en una moderna LAN conmutada.

Puentes y switches

Si bien los puentes y los switches tienen muchos atributos en común, su tecnología presenta varias diferencias. Los puentes se utilizan generalmente para dividir una LAN en un par de segmentos más pequeños. En cambio los switches se utilizan, por lo general, para dividir una gran LAN en varios segmentos más pequeños. Los puentes tienen sólo un par de puertos para la conectividad de la LAN, mientras que los switches cuentan con varios.

Conmutación simétrica y asimétrica

Asimétrica

La conmutación asimétrica permite un mayor ancho de banda dedicado al puerto de conmutación del servidor para evitar que se produzca un cuello de botella. Esto brinda una mejor calidad en el flujo de tráfico, donde varios clientes se comunican con un servidor al mismo tiempo. Se requieren buffers de memoria en un switch asimétrico. Para que el switch coincida con las distintas velocidades de datos en los distintos puertos, se almacenan tramas enteras en los buffers de memoria y se envían al puerto una después de la otra según se requiera.


Simétrico

En un switch simétrico, todos los puertos cuentan con el mismo ancho de banda. La conmutación simétrica se ve optimizada por una carga de tráfico distribuida de manera uniforme, como en un entorno de escritorio entre pares.

El administrador de la red debe evaluar la cantidad de ancho de banda que se necesita para las conexiones entre dispositivos a fin de que pueda adaptarse al flujo de datos de las aplicaciones basadas en redes. La mayoría de los switches actuales son asimétricos, ya que son los que ofrecen mayor flexibilidad.




Búfer de memoria basado en puerto y búfer de memoria compartida

Un switch Ethernet puede usar una técnica de buffers para almacenar tramas antes de enviarlas. El almacenamiento en buffers también puede utilizarse cuando el puerto destino está ocupado debido a una congestión. El switch almacena la trama hasta el momento en que pueda transmitirse. El empleo de memoria para almacenar datos se denomina almacenamiento en buffers de memoria. El búfer de memoria está integrado al hardware del switch y, además de aumentar la cantidad de memoria disponible, no puede configurarse.

Existen dos tipos de almacenamiento en buffers de memoria: memoria compartida y memoria basada en puerto.



Búfer de historial de comandos

Al configurar varias interfaces en un switch, se puede ahorrar tiempo y evitar escribir los comandos nuevamente mediante el búfer del historial de comandos del IOS de Cisco.










Equipo:

Edgar García Flores
Jorge A. Enriquez Ruiz

CISCO - CCNA 3 --------- Capítulo 1 ------ Resumen

 Diseño Lan


Una red de área local, red local o LAN (del inglés local area network) es la interconexión de una o varias computadoras y periféricos. Su extensión está limitada físicamente a un edificio o a un entorno de 200 metros, con repetidores podría llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de computadoras personales y estaciones de trabajo en oficinas, fábricas, etc.

 
 
El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información.

Características importantes

  • Tecnología broadcast (difusión) con el medio de transmisión compartido.
  • Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
  • Extensión máxima no superior a 5 km (una FDDI puede llegar a 200 km).
  • Uso de un medio de comunicación privado.
  • La simplicidad del medio de transmisión que utiliza (cable coaxial, cables telefónicos y fibra óptica).
  • La facilidad con que se pueden efectuar cambios en el hardware y el software.
  • Gran variedad y número de dispositivos conectados.
  • Posibilidad de conexión con otras redes.
  • Limitante de 100 m, puede llegar a más si se usan repetidores.




 Wikipedia (http://es.wikipedia.org/wiki/Red_de_%C3%A1rea_local




Detalles del diseño Lan

  •  El modelo de diseño jerárquico mejora en cuanto a la limitación de la malla parcial y plana, y a los modelos del diseño de malla al mejorar el rendimiento, la escalabilidad, la disponibilidad, la facilidad de administración y el mantenimiento de la red.
  • Las topologías de las redes jerárquicas facilitan la convergencia de la red al proporcionar el rendimiento necesario para que se combinen los datos de voz y video en la red de datos existente.
  • Se pueden realizar los análisis de flujo del tráfico, de las comunidades de usuarios, de los medios de almacenamiento de datos y la ubicación del servidor y del diagrama de la topología para ayudar a identificar los cuellos de botella de la red.
  • Luego, se pueden direccionar los cuellos de botella para mejorar el rendimiento de la red y determinar con exactitud los requerimientos apropiados del hardware para satisfacer el rendimiento deseado de la red.
  • Los switches Cisco combinan los factores de forma específicos, el rendimiento, la PoE y el soporte de la Capa 3 que admite los niveles del diseño de la red jerárquica.


Modelo de Redes Jerárquicas



El diseño de redes jerárquicas implica la división de la red en capas independientes. Cada capa cumple funciones específicas que definen su rol dentro de la red general. La separación de las diferentes funciones existentes en una red hace que el diseño de la red se vuelva modular y esto facilita la escalabilidad y el rendimiento.


Capa de acceso
La capa de acceso hace interfaz con dispositivos finales como las PC, impresoras y teléfonos IP, para proveer acceso al resto de la red. Esta capa de acceso puede incluir routers, switches, puentes, hubs y puntos de acceso inalámbricos.




Capa de distribución
La capa de distribución agrega los datos recibidos de los switches de la capa de acceso antes de que se transmitan a la capa núcleo para el enrutamiento hacia su destino final. La capa de distribución controla el flujo de tráfico de la red con el uso de políticas y traza los dominios de broadcast al realizar el enrutamiento de las funciones entre las LAN virtuales (VLAN) definidas en la capa de acceso. 



Capa núcleo
La capa núcleo del diseño jerárquico es la backbone de alta velocidad de la internetwork. La capa núcleo es esencial para la interconectividad entre los dispositivos de la capa de distribución, por lo tanto, es importante que el núcleo sea sumamente disponible y redundante.



Beneficios:


Principios de diseño de redes jerárquicas

Diámetro de la red
El diámetro es una medida de distancia pero en este caso se utiliza el término para medir el número de dispositivos. El diámetro de la red es el número de dispositivos que un paquete debe cruzar antes de alcanzar su destino. Mantener bajo el diámetro de la red asegura una latencia baja y predecible entre los dispositivos.

Agregado de ancho de banda
Cada capa en el modelo de redes jerárquicas es una candidata posible para el agregado de ancho de banda. El agregado de ancho de banda es la práctica de considerar los requisitos de ancho de banda específicos de cada parte de la jerarquía. Después de que se conocen los requisitos de ancho de banda de la red, se pueden agregar enlaces entre switches específicos, lo que recibe el nombre de agregado de enlaces.

Redundancia
La redundancia es una parte de la creación de una red altamente disponible. Se puede proveer redundancia de varias maneras. Por ejemplo, se pueden duplicar las conexiones de red entre los dispositivos o se pueden duplicar los propios dispositivos.

Redes Convergentes

La convergencia es el proceso de combinación de las comunicaciones con voz y video en una red de datos. La transferencia a una red convergente puede ser una decisión difícil si la empresa ya realizó una inversión en redes de voz, video y datos separadas. 

 Un beneficio de una red convergente es la existencia de sólo una red para administrar. Con las redes de voz, video y datos separadas, los cambios realizados en la red deben coordinarse a través de redes. Además, existen costos adicionales que resultan del uso de tres conjuntos de cableado de redes. 





 Caracteristicas de los Switches

Switches de configuración fija
Los switches de configuración fija son sólo lo que podría esperarse: fijos en su configuración. Esto significa que no se pueden agregar características u opciones al switch más allá de las que originalmente vienen con el switch. El modelo en particular que se compra determina las características y opciones disponibles. 


Switches modulares
Los switches modulares ofrecen más flexibilidad en su configuración. Habitualmente, los switches modulares vienen con chasis de diferentes tamaños que permiten la instalación de diferentes números de tarjetas de línea modulares. Las tarjetas de línea son las que contienen los puertos. La tarjeta de línea se ajusta al chasis del switch de igual manera que las tarjetas de expansión se ajustan en la PC.  




Switches apilables
Los switches apilables pueden interconectarse con el uso de un cable especial del backplane que otorga rendimiento de ancho de banda entre los switches. Cisco introdujo la tecnología StackWise en una de sus líneas de productos con switches. StackWise permite interconectar hasta nueve switches con el uso de conexiones backplane totalmente redundantes.  







Power over Ethernet


Power over Ethernet (PoE) permite que el switch suministre energía a un dispositivo por el cableado de Ethernet existente. Esta característica puede utilizarse por medio de los teléfonos IP y algunos puntos de acceso inalámbricos. PoE permite mayor flexibilidad al instalar los puntos de acceso inalámbricos y los teléfonos IP porque se los puede instalar en cualquier lugar donde se puede tender un cable de Ethernet. No es necesario considerar cómo suministrar energía eléctrica normal al dispositivo. Sólo se debe elegir un switch que admita PoE si realmente se va a aprovechar esa función, porque suma un costo considerable al switch.


Los Switches modulares:
son aquellos a los que se le s pueden instalar tarjetas de linea que contienen mas puertos tomando en cuenta quer entre mas grande sea la carcasa, esta puede acceptar mas tarjetas. 
Power over Ethernet (PoE): permite que el switch suministre energía a un dispositivo por el cableado de Ethernet existente.



Los switches de la capa de acceso:
facilitan la conexión de los dispositivos de nodo final a la red. Por esta razón, necesitan admitir características como seguridad de puerto, VLAN, Fast Ethernet/Gigabit Ethernet, PoE y agregado de enlaces.

La seguridad de puerto permite que el switch decida cuántos y qué dispositivos específicos se permiten conectar al switch. Todos los switches Cisco admiten seguridad de capa de puerto. La seguridad de puerto se aplica en el acceso. En consecuencia, es una importante primera línea de defensa para una red.

 
MLS: Los switches de la Capa 3 o swithces multicapa ofrecen una funcionalidad avanzada
QoS: Calidad de servicio siempre es un prioridad en cuanto se habla de  aplicaciones tales como la transmisión de vídeo o voz, con ventajas como Escalabilidad, Redundancia, Rendimiento, Seguridad y Fácil administración. 
Red convergente: Se da en las redes WAN y adoptan la idea de ejecutar servicios de voz y video en
sus redes de datos. 

Características del switch de la capa de distribución

Los switches de la capa de distribución desempeñan una función muy importante en la red. Recopilan los datos de todos los switches de capa de acceso y los envían a los switches de capa núcleo. Aprenderá más adelante en este curso que el tráfico generado en la Capa 2 en una red conmutada necesita ser administrado o segmentado en las VLAN para no consumir ancho de banda de forma innecesaria a través de la red. Los switches de capa de distribución proporcionan funciones de enrutamiento entre las VLAN, para que una VLAN pueda comunicarse con otra en la red.






Equipo:

Edgar García Flores
Jorge A. Enriquez Ruiz





Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More