Resumenes de los Capítulos de CISCO.

Resumenes de los capitulos del CCNA 2 y CCNA 3 V4.0 algunos de ellos muestran videos explicativos acerca del capitulo, sientanse libres de copiarlos y distribuirlos! d(^_^).

Programa Calculo de Mensualidades.

Programa que calcula el precio y las mensualidades a pagar de 12 modelos de autos PEUGEOT.

Programa BASE DE DATOS com MySQL

Este programa permite la consulta y manejo de bases de datos, simulando el sistema de pagos de colegiaturas

TUTORIAL, Conectar MySQL y vb.NET

Este tutorial explica de manera breve la manera de conectar MySQL y vb.NET, Ejemplos sencillos.

Programacion para iOS

Ejemplos Básicos de Programacion para iPhone y iPad

domingo, 15 de julio de 2012

CISCO - CCNA 3 --------- Capítulo 5 ------ Resumen

STP Spanning Tree 

(Spanning Tree Protocol) (SmmTPr o STP) es un protocolo de red de nivel 2 de la capa OSI (nivel de enlace de datos). Está basado en un algoritmo diseñado por Radia Perlman mientras trabajaba para DEC. Hay 2 versiones del STP: la original (DEC STP) y la estandarizada por el IEEE (IEEE 802.1D), que no son compatibles entre sí. En la actualidad, se recomienda utilizar la versión estandarizada por el IEEE.
Su función es la de gestionar la presencia de bucles en topologías de red debido a la existencia de enlaces redundantes (necesarios en muchos casos para garantizar la disponibilidad de las conexiones). El protocolo permite a los dispositivos de interconexión activar o desactivar automáticamente los enlaces de conexión, de forma que se garantice que la topología está libre de bucles. STP es transparente a las estaciones de usuario.
Los bucles infinitos ocurren cuando hay rutas alternativas hacia una misma máquina o segmento de red destino. Estas rutas alternativas son necesarias para proporcionar redundancia, ofreciendo una mayor fiabilidad a la red. Si existen varios enlaces, en el caso que uno falle, otro enlace puede seguir soportando el tráfico de la red. Los problemas aparecen cuando utilizamos dispositivos de interconexión de nivel de enlace, como un puente de red o un conmutador de paquetes.


Cuando existen bucles en la topología de red, los dispositivos de interconexión de nivel de enlace de datos reenvían indefinidamente las tramas Broadcast y multicast creando un bucle infinito que consume tanto ancho de banda en la red como CPU de los dispositivos de enrutamiento. Esto provoca que la red degrade en muy poco tiempo pudiéndose quedar inutilizable. Al no existir un campo TTL (Time To Live, Tiempo de Vida) en las tramas de capa 2 se quedan atrapadas indefinidamente hasta que un administrador de sistemas rompe el bucle. Un router, por el contrario, sí podría evitar este tipo de reenvíos indefinidos. La solución consiste en permitir la existencia de enlaces físicos redundantes, pero creando una topología lógica libre de bucles. STP calcula una ruta única libre de bucles entre los dispositivos de la red pero manteniendo los enlaces redundantes desactivados como reserva, para activarlos en caso de falla.
 



Wikipedia ( http://es.wikipedia.org/wiki/Spanning_tree )



Dertalles de Spannin Tree Protocol


  • STP evita que se formen bucles en una red jerárquica que implementa enlaces redundantes.
  • STP utiliza distintos estados de puertos y temporizadores para evitar la generación de bucles.
  • Un switch de la red se designa como puente raíz. El puente raíz se determina a través de un proceso de elección donde las tramas de BPDU se intercambian entre switches vecinos en un dominio de broadcast.
  • Todos los demás switches de la red utilizan el algoritmo de spanning tree para determinar sus funciones de puertos de switch. Los puertos de switch más cercanos al puente raíz se convierten en puertos raíz. Los puertos que no son raíz restantes compiten por la función de designado o no designado.
  • Debido a que la convergencia del protocolo spanning tree puede tomar hasta 50 segundos en completarse, se desarrollaron RSTP y PVST+ rápido.
  • RSTP reduce el tiempo de convergencia hasta 6 segundos.
  • PVST+ rápido agrega el soporte de VLAN en RSTP. PVST+ rápido es la implementación preferida del protocolo spanning tree utilizado en un red de switches de Cisco.


Redundancia


En un diseño jerárquico, la redundancia se logra en las capas de distribución y núcleo a través de hardware adicional y rutas alternativas entre dicho hardware.

La redundancia proporciona una gran flexibilidad en la elección de rutas de la red y permite que los datos se transmitan independientemente de la existencia de fallas en una ruta simple o en un dispositivo en las capas de distribución o núcleo. La redundancia cuenta con algunas complicaciones que deben ser tenidas en cuenta antes de que se implemente de forma segura en una red jerárquica.

Inconvenientes

Cuando existen varias rutas entre dos dispositivos en la red y STP se ha deshabilitado en los switches, puede generarse un bucle de Capa 2. Si STP está habilitado en estos switches, que es lo que que está predeterminado, el bucle de Capa 2 puede evitarse.

Las tramas de Ethernet no poseen un tiempo de existencia (TTL, Time to Live) como los paquetes IP que viajan por los routers. En consecuencia, si no finalizan de manera adecuada en una red conmutada, las mismas siguen rebotando de switch en switch indefinidamente o hasta que se interrumpa un enlace y elimine el bucle.

Las tramas de broadcast se envían a todos los puertos de switch, excepto el puerto de origen. Esto asegura que todos los dispositivos del dominio de broadcast puedan recibir la trama. Si existe más de una ruta para enviar la trama, se puede generar un bucle sin fin.

Tormentas de broadcast
Una tormenta de broadcast se produce cuando existen tantas tramas de broadcast atrapadas en un bucle de Capa 2 que se consume todo el ancho de banda disponible. En consecuencia, no existe ancho de banda disponible para el tráfico legítimo y la red queda no disponible para la comunicación de datos.



Tramas de unicast duplicadas
Las tramas de broadcast no son el único tipo de tramas que son afectadas por los bucles. Las tramas de unicast enviadas a una red con bucles pueden generar tramas duplicadas que llegan al dispositivo de destino.



Bucles en el armario de cableado
La redundancia es un componente importante de una topología de red jerárquica de alta disponibilidad, pero los bucles pueden surgir como resultado de varias rutas configuradas en la red. Se pueden evitar los bucles mediante el protocolo spanning tree (STP). Sin embargo, si STP no se ha implementado en la preparación de una topología redundante, los bucles pueden ocurrir de improviso.




Bucles en los cubículos
Debido a conexiones de datos de red insuficientes, algunos usuarios finales poseen un hub o switch personal ubicado en su entorno de trabajo. En vez de incurrir en el costo de mantener conexiones de datos de red adicionales en el lugar de trabajo, un hub o switch simples se conectan a una conexión de datos de red existente, lo que permite que todos los dispositivos conectados al hub o switch personal puedan acceder a la red.



Algoritmo y Topología Spanning Tree

La redundancia aumenta la disponibilidad de la topología de red al proteger la red de un único punto de falla, como un cable de red o switch que fallan. Cuando se introduce la redundancia en un diseño de la Capa 2, pueden generarse bucles y tramas duplicadas. Los bucles y las tramas duplicadas pueden tener consecuencias graves en la red. El protocolo spanning tree (STP) fue desarrollado para enfrentar estos inconvenientes.


Algoritmo STP


Puertos raíz: 
los puertos de switch más cercanos al puente raíz. En el ejemplo, el puerto raíz del switch S2 es F0/1, configurado para el enlace troncal entre el switch S2 y el switch S1. El puerto raíz del switch S3 es F0/1, configurado para el enlace troncal entre el switch S3 y el switch S1.

Puertos designados:

 todos los puertos que no son raíz y que aún pueden enviar tráfico a la red. En el ejemplo, los puertos de switch F0/1 y F0/2 del switch S1 son puertos designados. El switch S2 también cuenta con su puerto F0/2 configurado como puerto designado.

Puertos no designados:

 todos los puertos configurados en estado de bloqueo para evitar los bucles. En el ejemplo, el STA configura al puerto F0/2 del switch S3 en la función no designado. El puerto F0/2 del switch S3 se encuentra en estado de bloqueo.


El puente raíz

Toda instancia de spanning-tree (LAN conmutada o dominio de broadcast) posee un switch designado como puente raíz. El puente raíz sirve como punto de referencia para todos los cálculos de spanning-tree para determinar las rutas redundantes que deben bloquearse.

Un proceso de elección determina el switch que se transforma en el puente raíz. 

 


Las mejores rutas al puente raíz

Cuando se ha designado el puente raíz para la instancia de spanning-tree, el STA comienza el proceso de determinar las mejores rutas hacia el puente raíz desde todos los destinos del dominio de broadcast. La información de ruta se determina mediante la suma de los costos individuales de los puertos que atraviesa la ruta desde el destino al puente raíz.



Campos BPDU

La trama de BPDU contiene 12 campos distintos que se utilizan para transmitir información de prioridad y de ruta que STP necesita para determinar el puente raíz y las rutas al mismo.

Desplace el mouse sobre los campos BPDU de la figura para ver su contenido.

Los primeros cuatro campos identifican el protocolo, la versión, el tipo de mensaje y los señaladores de estado.


Los cuatro campos siguientes se utilizan para identificar el puente raíz y el costo de la ruta hacia el mismo.
Los últimos cuatro campos son todos campos temporizadores que determinan la frecuencia en que se envían los mensajes de BPDU y la cantidad de tiempo que la información recibida a través del proceso BPDU (siguiente tema) es retenida. La función de los campos temporizadores se explicará con más detalle posteriormente en este curso.

 

 ID de Puente

Campos BID

El ID de puente (BID) se utiliza para determinar el puente raíz de una red. Este tema describe cómo se compone un BID y cómo configurarlo en un switch para ejercer influencia en el proceso de elección y asegurar que se les asigne la función de puente raíz a switches específicos.

El campo BID de una trama de BPDU contiene tres campos separados: prioridad de puente, ID de sistema extendido y dirección MAC. Cada campo se utiliza durante la elección del puente raíz.





 Estados de los puertos

 Bloqueo: el puerto es un puerto no designado y no participa en el envío de tramas. El puerto recibe tramas de BPDU para determinar la ubicación y el ID de raíz del switch del puente raíz y las funciones de puertos que cada uno de los mismos debe asumir en la topología final de STP activa.

Escuchar: STP determina que el puerto puede participar en el envío de tramas de acuerdo a las tramas de BPDU que el switch ha recibido hasta ahora. En este momento, el puerto de switch no sólo recibe tramas de BPDU, sino que también transmite sus propias tramas de BPDU e informa a los switches adyacentes que el mismo se prepara para participar en la topología activa.


Aprender: el puerto se prepara para participar en el envío de tramas y comienza a llenar la tabla de direcciones MAC. 


Enviar:
el puerto se considera parte de la topología activa, envía tramas y envía y recibe tramas de BPDU.
Deshabilitado: el puerto de la Capa 2 no participa en el spanning tree y no envía tramas. El estado deshabilitado se establece cuando el puerto de switch se encuentra administrativamente deshabilitado.


Temporizadores de BPDU


La cantidad de tiempo que un puerto permanece en los distintos estados depende de los temporizadores de BPDU. Sólo el switch con función de puente raíz puede enviar información a través del árbol para ajustar los temporizadores. Los siguientes temporizadores determinan el rendimiento de STP y los cambios de estado:

Tiempo de saludo

El tiempo de saludo es el tiempo que transcurre cada vez que una trama de BPDU es enviada a un puerto.
Este valor está predeterminado en 2 segundos pero puede ajustarse al intervalo de 1 a 10 segundos. 


Retraso en el envío

El retraso de envío es el tiempo que transcurre en los estados de escuchar y aprender.
Este valor es igual a 15 segundos de manera predeterminada para cada estado pero puede ajustarse al intervalo de 4 a 30 segundos. 


Antigüedad máxima 

El temporizador de antigüedad máxima controla la cantidad máxima de tiempo en que un puerto de switch guarda información de la configuración de la BPDU.
Este valor está predeterminado en 20 segundos pero puede ajustarse al intervalo de 6 a 40 segundos.  


PortFast de Cisco


PortFast es una tecnología de Cisco. Cuando un switch de puerto configurado con PortFast se establece como puerto de acceso, sufre una transición del estado de bloqueo al de enviar de manera inmediata, saltando los pasos típicos de escuchar y aprender. Puede utilizarse PortFast en puertos de acceso, conectados a una única estación de trabajo o servidor, para permitir que dichos dispositivos se conecten a la red de manera inmediata sin esperar la convergencia del árbol de expansión. 




Convergencia de STP

La convergencia es el tiempo que le toma a la red determinar el switch que asumirá la función del puente raíz, atravesar todos los otros estados de puerto y configurar todos los puertos de switch en sus funciones de puertos finales de spanning-tree, donde se eliminan todos los posibles bucles. El proceso de convergencia demora un tiempo en completarse debido a los distintos temporizadores que se utilizan para coordinar el proceso.

Para comprender el proceso de convergencia de forma más profunda, el mismo se ha dividido en tres pasos distintos:

Paso 1. Elegir un puente raíz

Paso 2. Elegir los puertos raíz

Paso 3.
Elegir los puertos designados y no designados 


RSTP

RSTP (IEEE 802.1w) es una evolución del estándar 802.1D. Principalmente, la terminología de 802.1w STP sigue siendo la misma que la del IEEE 802.1D STP. La mayoría de los parámetros no se modifican, de modo que los usuarios familiarizados con STP puedan configurar rápidamente el nuevo protocolo.  


STP 1

Video Click AQUI!


STP 2

Video Click AQUI!



Equipo:

Edgar García Flores
Jorge A. Enriquez Ruiz

CISCO - CCNA 3 --------- Capítulo 4 ------ Resumen

VTP  VLAN Trunking Protocol

VTP son las siglas de VLAN Trunking Protocol, un protocolo de mensajes de nivel 2 usado para configurar y administrar VLANs en equipos Cisco. Permite centralizar y simplificar la administración en un domino de VLANs, pudiendo crear, borrar y renombrar las mismas, reduciendo así la necesidad de configurar la misma VLAN en todos los nodos. El protocolo VTP nace como una herramienta de administración para redes de cierto tamaño, donde la gestión manual se vuelve inabordable.



VTP opera en 3 modos distintos:
  • Servidor
  • Visible
  • Transparente

Servidor:
Es el modo por defecto. Desde él se pueden crear, eliminar o modificar VLANs. Su cometido es anunciar su configuración al resto de switches del mismo dominio VTP y sincronizar dicha configuración con la de otros servidores, basándose en los mensajes VTP recibidos a través de sus enlaces trunk. Debe haber al menos un servidor. Se recomienda autenticación MD5.
Cliente:
En este modo no se pueden crear, eliminar o modificar VLANs, tan sólo sincronizar esta información basándose en los mensajes VTP recibidos de servidores en el propio dominio. Un cliente VTP sólo guarda la información de la VLAN para el dominio completo mientras el switch está activado. Un reinicio del switch borra la información de la VLAN.
Transparente:
Desde este modo tampoco se pueden crear, eliminar o modificar VLANs que afecten a los demás switches. La información VLAN en los switches que trabajen en este modo sólo se puede modificar localmente. Su nombre se debe a que no procesa las actualizaciones VTP recibidas, tan sólo las reenvía a los switches del mismo dominio.
Wikipedia (http://es.wikipedia.org/wiki/VLAN_Trunking_Protocol)


Detalles de VTP

  • El VTP simplifica la administración de la VLAN por medio de múltiples switches Cisco Catalyst repitiendo las configuraciones de VLAN entre switches.

  • Un dominio de VTP define qué switches en una red deben configurarse de manera similar con respecto a la configuración de la VLAN.

  • Un switch Cisco Catalyst se puede configurar para uno de tres modos operativos del VTP: servidor, cliente, o transparente.

  • El modo servidor del VTP permite la creación, eliminación y modificación de las VLAN.

  • El modo cliente del VTP evita la modificación de las VLAN y sólo puede recibir información de la VLAN a través de las publicaciones del VTP.

  • El modo transparente del VTP permite la creación, eliminación y modificación de las VLAN locales incluidas VLAN de rango extendido. La información de la VLAN no está sincronizada con otros switches.

  • Se pueden usar Contraseñas de VTP para limitar la sincronización entre switches configurados con el mismo dominio de VTP.

  • La depuración del VTP puede mejorar el ancho de banda general sobre los enlaces troncales mediante la limitación del tráfico de saturación que contienen las VLAN activas específicas para el tráfico de saturación.
    Siempre verifique su configuración para limitar la posibilidad de errores del VTP.

El VTP permite a un administrador de red configurar un switch de modo que propagará las configuraciones de la VLAN hacia los otros switches en la red. El switch se puede configurar en la función de servidor del VTP o de cliente del VTP. El VTP sólo aprende sobre las VLAN de rango normal (ID de VLAN 1 a 1005). Las VLAN de rango extendido (ID mayor a 1005) no son admitidas por el VTP.


Descripción general del VTP

El VTP permite al administrador de red realizar cambios en un switch que está configurado como servidor del VTP. Básicamente, el servidor del VTP distribuye y sincroniza la información de la VLAN a los switches habilitados por el VTP a través de la red conmutada, lo que minimiza los problemas causados por las configuraciones incorrectas y las inconsistencias en las configuraciones. El VTP guarda las configuraciones de la VLAN en la base de datos de la VLAN denominada vlan.dat.

Ventajas del VTP

  • Consistencia en la configuración de la VLAN a través de la red
  • Seguimiento y monitoreo preciso de las VLAN
  • Informes dinámicos sobre las VLAN que se agregan a una red
  • Configuración de enlace troncal dinámico cuando las VLAN se agregan a la red
 

Componentes del VTP

Existe un número de componentes clave con los que necesita familiarizarse al aprender sobre el VTP.

Dominio del VTP: Consiste de uno o más switches interconectados. Todos los switches en un dominio comparten los detalles de configuración de la VLAN usando las publicaciones del VTP. Un router o switch de Capa 3 define el límite de cada dominio.

Publicaciones del VTP: El VTP usa una jerarquía de publicaciones para distribuir y sincronizar las configuraciones de la VLAN a través de la red.

Modos del VTP: Un switch se puede configurar en uno de tres modos: servidor, cliente o transparente.

Servidor del VTP: los servidores del VTP publican la información VLAN del dominio del VTP a otros switches habilitados por el VTP en el mismo dominio del VTP. Los servidores del VTP guardan la información de la VLAN para el dominio completo en la NVRAM. El servidor es donde las VLAN se pueden crear, eliminar o redenominar para el dominio.

Cliente del VTP: los clientes del VTP funcionan de la misma manera que los servidores del VTP pero no pueden crear, cambiar o eliminar las VLAN en un cliente del VTP. Un cliente del VTP sólo guarda la información de la VLAN para el dominio completo mientras el switch está activado. Un reinicio del switch borra la información de la VLAN. Debe configurar el modo de cliente del VTP en un switch.

VTP transparente: los switches transparentes envían publicaciones del VTP a los clientes del VTP y servidores del VTP. Los switches transparentes no participan en el VTP. Las VLAN que se crean, redenominan o se eliminan en los switches transparentes son locales para ese switch solamente.

Depuración del VTP: La depuración del VTP aumenta el ancho de banda disponible para la red mediante la restricción del tráfico saturado a esos enlaces troncales que el tráfico debe utilizar para alcanzar los dispositivos de destino. Sin la depuración del VTP, un switch satura el broadcast, el multicast y el tráfico desconocido de unicast a través de los enlaces troncales dentro de un dominio del VTP aunque los switches receptores podrían descartarlos.

Configuracion Predeterminada de VTP

El beneficio del VTP es que automáticamente distribuye y sincroniza las configuraciones de dominio y VLAN a través de la red. Sin embargo, este beneficio viene con un costo: sólo se pueden agregar switches que están en la configuración predeterminada del VTP. Si se agrega un switch permitido por el VTP cuya configuración sustituye a las mismas del VTP de la red existente, los cambios que son difíciles de solucionar se propagan automáticamente a través de la red.

Visualizacion de VTP


 

Versión del VTP: muestra la versión del VTP que el switch puede ejecutar. De manera predeterminada, el switch implementa la versión 1, pero puede configurarse para la versión 2.

Revisión de la configuración: el número de la revisión de la configuración actual está en el switch. Más adelante, en este capítulo, aprenderá más acerca de los números de revisiones.


VLAN máximas admitidas localmente: Número máximo de VLAN admitidas localmente. 


Número de VLAN existentes: Número de VLAN existentes. 


Modo operativo del VTP: puede ser servidor, cliente o transparente. 


Nombre de dominio del VTP: nombre que identifica el dominio administrativo para el switch. 


Modo de depuración del VTP: muestra si la depuración está habilitada o deshabilitada. 


Modo de la V2 del VTP: muestra si la versión 2 del VTP está habilitada. La versión 2 del VTP está deshabilitada de manera predeterminada.


Generación de Traps del VTP: muestra si las traps del VTP se envían hacia la estación de administración de red. 


Última configuración modificada: fecha y hora de la última modificación de configuración. Muestra la dirección IP del switch que causó el cambio de configuración a la base de datos.  


Dominios de VTP

Para que un switch de cliente o servidor del VTP participe en una red habilitada por el VTP, debe ser parte del mismo dominio. Cuando los switches están en diferentes dominios de VTP no intercambian los mensajes del VTP. Un servidor del VTP propaga el nombre de dominio del VTP a todos los switches. La propagación del nombre de dominio usa tres componentes del VTP: servidores, clientes y publicaciones. 

 Modos de VTP




Un switch Cisco, configurado con el software IOS de Cisco, se puede configurar ya sea en modo servidor, cliente o transparente. Estos modos difieren en cómo se utilizan para administrar y publicar los dominios del VTP y VLAN.


Modo servidor

En modo servidor, se pueden crear, modificar y eliminar las VLAN para el dominio completo del VTP. El modo servidor del VTP es el modo predeterminado del switch Cisco. Los servidores del VTP publican sus configuraciones de VLAN a otros switches en el mismo dominio del VTP y sincronizan sus configuraciones de VLAN con otros switches basados en las publicaciones recibidas sobre los enlaces troncales. Los servidores del VTP mantienen la pista de actualizaciones por medio del número de revisión de configuración. Otros switches en el mismo dominio del VTP comparan su número de revisión de configuración con el número de revisión recibido desde un servidor del VTP para ver si necesitan sincronizar su base de datos de VLAN.

Modo cliente

Si un switch está en modo cliente, no se pueden crear, cambiar o eliminar las VLAN. Además, la información de configuración de la VLAN que el switch del cliente del VTP recibe del switch del servidor del VTP se almacena en una base de datos de la VLAN, no en NVRAM. Consecuentemente, los clientes del VTP requieren menos memoria que los servidores del VTP. Cuando un cliente del VTP se desactiva y reinicia, envía una publicación de solicitud a un servidor del VTP para actualizar la información de configuración de la VLAN.

Modo transparente

Los switches configurados en modo transparente envían publicaciones de VTP que reciben en sus puertos troncales hacia otros switches en la red. Los switches en modo transparente del VTP no publican su configuración de VLAN y no sincronizan su configuración de VLAN con ningún otro switch. Configure un switch en modo transparente cuando tiene las configuraciones de la VLAN que tienen importancia local y no deben compartirse con el resto de la red.

Configuracion VTP

En el servidor del VTP:
  1. Confirme las configuraciones predeterminadas.
  2. Configure 2 switches como servidores del VTP.
  3. Configure el dominio de VTP en el primer switch de la red.
  4. Asegúrese de que todos los switches estén en el mismo modo de versión del protocolo de VTP.
  5. Configure las VLAN y los puertos troncales.
En el cliente del VTP:
  1. Confirme las configuraciones predeterminadas.
  2. Configure el modo cliente del VTP.
  3. Configure enlaces troncales.
  4. Conecte el servidor de VTP.
  5. Verifique el estado del VTP.
  6. Configure los puertos de acceso.



Video click AQUI!

Equipo:

Edgar García Flores
Jorge A. Enriquez Ruiz

sábado, 14 de julio de 2012

CISCO - CCNA 3 --------- Capítulo 3 ------ Resumen

VLAN


Una VLAN (acrónimo de virtual LAN, «red de área local virtual») es un método de crear redes lógicamente independientes dentro de una misma red física. Varias VLANs pueden coexistir en un único conmutadsor físico o en una única red física. Son útiles para reducir el tamaño del dominio de difusion y ayudan en la administración de la red separando segmentos lógicos de una red de área local (como departamentos de una empresa) que no deberían intercambiar datos usando la red local (aunque podrían hacerlo a través de un enrutador o un conmutador de capa 3 y 4).



Una VLAN consiste en una red de ordenadores que se comportan como si estuviesen conectados al mismo conmutador, aunque pueden estar en realidad conectados físicamente a diferentes segmentos de una red de area local.  Los administradores de red configuran las VLANs mediante software en lugar de hardware, lo que las hace extremadamente flexibles. Una de las mayores ventajas de las VLANs surge cuando se traslada físicamente algún ordenador a otra ubicación: puede permanecer en la misma VLAN sin necesidad de cambiar la configuración IP de la máquina.




Wikipedia  ( http://es.wikipedia.org/wiki/VLAN )





Detalles de la VLAN

  • Las VLAN separan los dominios de broadcast en los switches.

  • Las VLAN mejoran el funcionamiento, la gestión y la seguridad de la red.

  • La VLAN se puede usar para el tráfico de datos, voz, protocolo de red y administración de red.

  • Existen tres modos de pertenencia diferentes: Modo VLAN estático, dinámico y de voz.

  • Se necesitan routers o switches de Capa 3 para la comunicación entre VLAN.

  • Los enlaces troncales permiten que muchas VLAN atraviesen un único enlace a fin de simplificar la comunicación intra VLAN, a través de múltiples switches.

  • El IEEE 802.1Q es el protocolo de enlace troncal estándar

  • El 802.1Q usa un proceso de etiquetado de tramas para mantener el tráfico de VLAN separado mientras atraviesa el enlace troncal.

  • El 802.1Q no etiqueta el tráfico de la VLAN nativa, lo que puede resultar en problemas cuando el enlace troncal está mal configurado.

Una VLAN es una subred IP separada de manera lógica. Las VLAN permiten que redes de IP y subredes múltiples existan en la misma red conmutada. La figura muestra una red con tres computadoras. Para que las computadoras se comuniquen en la misma VLAN, cada una debe tener una dirección IP y una máscara de subred consistente con esa VLAN. En el switch deben darse de alta las VLANs y cada puerto asignarse a la VLAN correspondiente. Un puerto de switch con una VLAN singular configurada en el mismo se denomina puerto de acceso.



Ventajas de las VLAN
 
La productividad del usuario y la adaptabilidad de la red son impulsores clave para el crecimiento y el éxito del negocio. La implementación de la tecnología de VLAN permite que una red admita de manera más flexible las metas comerciales. Los principales beneficios de utilizar las VLAN son los siguientes:


Seguridad:
los grupos que tienen datos sensibles se separan del resto de la red, disminuyendo las posibilidades de que ocurran violaciones de información confidencial. Las computadoras del cuerpo docente se encuentran en la VLAN 10 y están completamente separadas del tráfico de datos del Invitado y de los estudiantes.

Reducción de costo:
el ahorro en el costo resulta de la poca necesidad de actualizaciones de red caras y más usos eficientes de enlaces y ancho de banda existente.

Mejor rendimiento: la división de las redes planas de Capa 2 en múltiples grupos lógicos de trabajo (dominios de broadcast) reduce el tráfico innecesario en la red y potencia el rendimiento.

Mitigación de la tormenta de broadcast: la división de una red en las VLAN reduce la cantidad de dispositivos que pueden participar en una tormenta de broadcast.

Mayor eficiencia del personal de TI:
las VLAN facilitan el manejo de la red debido a que los usuarios con requerimientos similares de red comparten la misma VLAN. Cuando proporciona un switch nuevo, todas las políticas y procedimientos que ya se configuraron para la VLAN particular se implementan cuando se asignan los puertos.

Administración de aplicación o de proyectos más simples
: las VLAN agregan dispositivos de red y usuarios para admitir los requerimientos geográficos o comerciales. Tener funciones separadas hace que gestionar un proyecto o trabajar con una aplicación especializada sea más fácil, por ejemplo una plataforma de desarrollo de e-learning para el cuerpo docente. También es fácil determinar el alcance de los efectos de la actualización de los servicios de red.



TIPOS DE VLAN

VLAN de Datos
Una VLAN de datos es una VLAN configurada para enviar sólo tráfico de datos generado por el usuario. Una VLAN podría enviar tráfico basado en voz o tráfico utilizado para administrar el switch, pero este tráfico no sería parte de una VLAN de datos. Es una práctica común separar el tráfico de voz y de administración del tráfico de datos.

VLAN Predeterminada
Todos los puertos de switch se convierten en un miembro de la VLAN predeterminada luego del arranque inicial del switch. Hacer participar a todos los puertos de switch en la VLAN predeterminada los hace a todos parte del mismo dominio de broadcast. Esto admite cualquier dispositivo conectado a cualquier puerto de switch para comunicarse con otros dispositivos en otros puertos de switch.

VLAN Nativa
Una VLAN nativa está asignada a un puerto troncal 802.1Q. Un puerto de enlace troncal 802.1 Q admite el tráfico que llega de muchas VLAN (tráfico etiquetado) como también el tráfico que no llega de una VLAN (tráfico no etiquetado). El puerto de enlace troncal 802.1Q coloca el tráfico no etiquetado en la VLAN nativa. En la figura, la VLAN nativa es la VLAN 99. El tráfico no etiquetado lo genera una computadora conectada a un puerto de switch que se configura con la VLAN nativa. Las VLAN se establecen en la especificación IEEE 802.1Q para mantener la compatibilidad retrospectiva con el tráfico no etiquetado común para los ejemplos de LAN antigua.


VLAN de Administración
Una VLAN de administración es cualquier VLAN que usted configura para acceder a las capacidades de administración de un switch. La VLAN 1serviría como VLAN de administración si no definió proactivamente una VLAN única para que sirva como VLAN de administración. Se asigna una dirección IP y una máscara de subred a la VLAN de administración.

VLAN de voz
Ancho de banda garantizado para asegurar la calidad de la voz
Prioridad de la transmisión sobre los tipos de tráfico de la red
Capacidad para ser enrutado en áreas congestionadas de la red
Demora de menos de 150 milisegundos (ms) a través de la red





Modos de puertos de switch de VLAN 

VLAN estática:
 los puertos en un switch se asignan manualmente a una VLAN. Las VLAN estáticas se configuran por medio de la utilización del CLI de Cisco. Esto también se puede llevar a cabo con las aplicaciones de administración de GUI, como el Asistente de red Cisco. Sin embargo, una característica conveniente del CLI es que si asigna una interfaz a una VLAN que no existe, se crea la nueva VLAN para el usuario.

VLAN dinámica:

 este modo no se utiliza ampliamente en las redes de producción y no se investiga en este curso. Sin embargo, es útil saber qué es una VLAN dinámica. La membresía de una VLAN de puerto dinámico se configura utilizando un servidor especial denominado Servidor de política de membresía de VLAN (VMPS). Con el VMPS, asigna puertos de switch a las VLAN basadas en forma dinámica en la dirección MAC de origen del dispositivo conectado al puerto.

VLAN de voz: 

el puerto está configurado para que esté en modo de voz a fin de que pueda admitir un teléfono IP conectado al mismo. Antes de que configure una VLAN de voz en el puerto, primero debe configurar una VLAN para voz y una VLAN para datos. 



Enlaces Troncales

Un enlace troncal es un enlace punto a punto, entre dos dispositivos de red, que transporta más de una VLAN. Un enlace troncal de VLAN le permite extender las VLAN a través de toda una red. Cisco admite IEEE 802.1Q para la coordinación de enlaces troncales en interfaces Fast Ethernet y Gigabit Ethernet.
Un enlace troncal de VLAN no pertenece a una VLAN específica, sino que es un conducto para las VLAN entre switches y routers.




Descripción general del etiquetado de la trama de la VLAN

Cuando el switch recibe una trama en un puerto configurado en modo de acceso con una VLAN estática, el switch quita la trama e inserta una etiqueta de VLAN, vuelve a calcular la FCS y envía la trama etiquetada a un puerto de enlace troncal.

Configuracion del enlace troncal



Problemas comunes con enlaces troncales

Cuando configura la VLAN y los enlaces troncales en una infraestructura conmutada, estos tipos de errores de configuración son los más comunes, en el siguiente orden:

Faltas de concordancia de la VLAN nativa: los puertos se configuran con diferentes VLAN nativas, por ejemplo si un puerto ha definido la VLAN 99 como VLAN nativa y el otro puerto de enlace troncal ha definido la VLAN 100 como VLAN nativa. Estos errores de configuración generan notificaciones de consola, hacen que el tráfico de administración y control se dirija erróneamente y, como ya ha aprendido, representan un riesgo para la seguridad.

Faltas de concordancia del modo de enlace troncal: un puerto de enlace troncal se configura con el modo de enlace troncal "inactivo" y el otro con el modo de enlace troncal "activo". Estos errores de configuración hacen que el vínculo de enlace troncal deje de funcionar.

VLAN admitidas en enlaces troncales:
la lista de VLAN admitidas en un enlace troncal no se ha actualizado con los requerimientos de enlace troncal actuales de VLAN. En este caso, se envía tráfico inesperado o ningún tráfico al enlace troncal.


Video Click AQUI

Equipo:
Edgar García Flores
Jorge A. Enriquez Ruiz

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More